
Software System Design and Implementation

The University of New South Wales

School of Computer Science and Engineering

Sydney, Australia

COMP3141 18s1

Curry Howard Correspondence
(Curry Howard Isomorphism)

Let’s go back in time

• Different, equivalent models of computation to address Hilbert’s
Entscheidungsproblem

• Lambda-calculus (Church)

• Recursive functions (Gödel)

• Turing machine

The (untyped) lambda calculus

• Functions can be applied to themselves:

λf. f f

(λf. f f)(λf. f f)
⟶

(λf. f f)(λf. f f)
⟶

(λf. f f)(λf. f f)
…

𝛽

𝛽

• As a result, we can have non-terminating reduction sequences:

Church’s Simply Typed Lambda Calculus

case x f g ≃ case x of
 Left a -> f a
 Right b -> g b

• For the presentation, we add the following functions & data
constructors to the lambda calculus as short hand

• (,): like the pair data constructor in Haskell

• fst, snd: like Haskell fst and snd

• left, right: like Left and Right of the Either type

• case: similar to case in Haskell, but restricted to Either type

Church’s Simply Typed Lambda Calculus

• Can be encoded in the lambda-calculus

(,) = λa. λb. λf. f a b
fst = λa. λb. a
snd = λa. λb. b

Right = λa. λf. λg. f a
Left = λa. λf. λg. g a

 case = λa. λf. λg. a f g

Church’s Simply Typed Lambda Calculus

M :: A N :: B
(M, N) :: A * B

M :: A * B
fst M :: A

M :: A * B
snd M :: B

read as:
if you can derive
M :: A and N :: B

then
(M,N) :: A * B
is derivable

Church’s Simply Typed Lambda Calculus

M :: A

left M :: A + B

M :: B

right M :: A + B

M :: A + B K :: A ➔ C H:: B ➔ C

case M K H ::C

Church’s Simply Typed Lambda Calculus

[x :: A]

λx. M :: A ➔ B

⋮

M :: B

λx. M :: A ➔ B
(λx.M) N :: B

N :: A

read as:
if we can derive M :: B

from the assumption x :: A
then

λx.M :: A ➔ B
is derivable

Church’s Simply Typed Lambda Calculus

• The simply typed lambda calculus doesn’t have general recursion:

λf. f f can’t be typed!

• For all well-typed terms

- reduction terminates

- reduction does not change the type of a term

• Note: the Y-combinator can be added to make it turing-complete again:

Y = λf. (λx. f (x x))(λx. f(x x))

Y f = f (Y f)

Y :: (A ➔ A) ➔ A

Natural Deduction

• At around the same time, Gerhard Gentzen was working on the logic aspects
of the Hilbert program: establishing the consistency of various logics

• Gentzen introduced two new formulations of logic, which remain the main
ones used to this day:

- Sequent calculus

- Natural deduction

Natural Deduction

• Rules come in pairs: introduction and elimination

A B

A ∧ B
∧-I

A
A ∧ B

∧-E1
B

A ∧ B
∧-E2

A ∧ B
B ∧ A B ∧ A

B A
∧-I

A ∧ B
∧-E2

A ∧ B
∧-E1

Natural Deduction

• ⋁-introduction and elimination

A

A ⋁ B
⋁-I1

B

A ⋁ B
⋁-I2

A ⋁ B A ⇒ C B ⇒ C

C
⋁-E

Natural Deduction

• Implication

A ⇒ B

[A]
⋮

 B
⇒-I

A ⇒ B

B

A
⇒-E

Proof normalisation

• Gentzen observed that all proofs for propositional logic can be normalised,
so they only contain sub formulas of premise or conclusion:

A ∧ B
B

A ∧ B
A

B ∧ A
∧-I

∧-E2 ∧-E1 A ∧ B
B

A ∧ B
A

B ∧ A

A ∧ B
A

A ∧ A
A

Curry Howard Isomorphism

• In 1934, Curry observed a relationship between logic implication A ⇒ B and
function types A ➔ B

• Howard realised in 1969 that this connection is much deeper

Curry Howard Isomorphism

M :: A N :: B

(M, N) :: A * B

M :: A * B
fst M :: A

M :: A * B
snd M :: B

A B

A ∧ B

A
A ∧ B

B
A ∧ B

M :: A + B K :: A ➔ C H:: B ➔ C

case M K H :: C

M :: A

left M :: A + B

M :: B

right M :: A + B

A

A ⋁ B

B

A ⋁ B

A ⋁ B A ⇒ C B ⇒ C

C

[A]

A ⇒ B

⋮
 B

⇒-I

[x :: A]

λx. M :: A ➔ B

⋮

M :: B

A ⇒ B

B

A
⇒-E

λx. M :: A ➔ B
(λx.M) N :: B

N :: A

A ∧ B
B

A ∧ B
A

B ∧ A

A * B
B

A * B
A

B * A

x :: x ::
snd x :: fst x ::

(snd x, fst x) ::

A * B
B

A * B
A

B * A

A * B
A

A * A
A

(snd x, snd(fst x, fst x)) ::

(snd x, fst x)

• Proof normalisation corresponds to evaluation!

fst x :: fst x ::
(fst x, fst x)::

 snd(fst x, fst x)::

Curry Howard Isomorphism

• Howard proposed extension for for-all and existentially quantified types (now
known as dependent types) to predicate logic

- de Bruijn’s Automath

- Martin-Löf’s type theory (Agda, Idris)

- PRL, nuPRL

- Coquant and Huet’s calculus of constructions (Coq proof assistant)

Curry Howard Isomorphism

• In short, it is the observation that

• propositions can be viewed as types

• programs as their (constructive) proof

• proof normalisation as program evaluation

Curry Howard Isomorphism

• The pattern of logicians/computer scientist discovering the same system
independently has repeated since then multiple times:

• Second order lambda calculus (Jean-Yves Girard, John Reynolds), basis for
Java, C#

• Principal type inference, by Roger Hindley and Robin Milner (e.g., Haskell)

• Existential quantification in second order logic as basis for abstraction (John
Mitchell, Gordon Plotkin)

• Girard’s linear logic, linear types

• …?

