Software System Design and Implementation

Curry Howard Correspondence (Curry Howard Isomorphism)

The University of New South Wales School of Computer Science and Engineering Sydney, Australia

COMP3141 18s1

Let's go back in time

- Different, equivalent models of computation to address Hilbert's Entscheidungsproblem
	- Lambda-calculus (Church)
	- Recursive functions (Gödel)
	- Turing machine

The (untyped) lambda calculus

• Functions can be applied to themselves:

$$
\lambda f. \ f \ f
$$

• As a result, we can have non-terminating reduction sequences:

$$
(\lambda f. f f)(\lambda f. f f)
$$
\n
$$
\rightarrow \beta
$$
\n
$$
(\lambda f. f f)(\lambda f. f f)
$$
\n
$$
\rightarrow \beta
$$
\n
$$
(\lambda f. f f)(\lambda f. f f)
$$

- For the presentation, we add the following functions & data constructors to the lambda calculus as short hand
	- (,): like the pair data constructor in Haskell
	- fst, snd: like Haskell fst and snd
	- left, right: like Left and Right of the Either type
	- case: similar to case in Haskell, but restricted to Either type

case
$$
x
$$
 f $g \approx$ case x of

\nLeft $a \rightarrow f$ a

\nRight $b \rightarrow g$ b

• Can be encoded in the lambda-calculus

$$
(,)
$$
 = $\lambda a. \lambda b. \lambda f. f a b\nfst = $\lambda a. \lambda b. a$
\nsnd = $\lambda a. \lambda b. b$
\nRight = $\lambda a. \lambda f. \lambda g. g a\nLeft = $\lambda a. \lambda f. \lambda g. g a$
\ncase = $\lambda a. \lambda f. \lambda g. a f g$$$

M :: A N :: B (M, N) :: A * B read as: if you can derive M :: A and N :: B then $(M,N) :: A * B$ is derivable

M :: A + B K :: A **➔** C H:: B **➔** C case M K H ::C

 $[x :: A]$ λx. M :: A **➔** B $\ddot{\cdot}$ M :: B read as: if we can derive M :: B from the assumption x :: A then λx.M :: A ➔ B is derivable

$$
\lambda x. M :: A \rightarrow B N :: A
$$

($\lambda x. M$) N :: B

• The simply typed lambda calculus doesn't have general recursion:

$$
\lambda f. \quad f \quad f \quad can't be typed!
$$

- For all well-typed terms
	- reduction terminates
	- reduction does not change the type of a term
- Note: the Y-combinator can be added to make it turing-complete again:

$$
Y = \lambda f. \quad (\lambda x. f (x x)) (\lambda x. f(x x))
$$

\n
$$
Y f = f (Y f)
$$

\n
$$
Y :: (A \rightarrow A) \rightarrow A
$$

- At around the same time, Gerhard Gentzen was working on the logic aspects of the Hilbert program: establishing the consistency of various logics
- Gentzen introduced two new formulations of logic, which remain the main ones used to this day:
	- Sequent calculus
	- Natural deduction

• Rules come in pairs: introduction and elimination

A	B	\wedge -I	\wedge A B	\wedge -E1	\wedge A B	\wedge -E2	
A	A	B	\wedge -E2	\wedge -E2	\wedge -E2	\wedge -E1	\wedge -E1
A	A	B	\wedge -E1	\wedge -E1			
B	A	B	A	A	A		

• **V-introduction and elimination**

• Implication

Proof normalisation

• Gentzen observed that all proofs for propositional logic can be normalised, so they only contain sub formulas of premise or conclusion:

$$
\begin{array}{c|c}\nA \wedge B & A \wedge B \\
\hline\nA & A \\
\hline\nB & A \\
\hline\nB & A \\
\hline\nB & A\n\end{array}
$$

- In 1934, Curry observed a relationship between logic implication $A \Rightarrow B$ and function types $A \rightarrow B$
- Howard realised in 1969 that this connection is much deeper

$$
\begin{array}{c}\nM :: A * B \\
\hline\n\text{fst } M :: A \\
\hline\nA \land B \\
\hline\n\end{array}
$$

M :: A * B snd M :: B B A ∧ B

$$
M :: A + B K :: A \rightarrow C
$$
 H :: B \rightarrow C
case M K H :: C

$$
A \vee B \qquad A \Rightarrow C \qquad B \Rightarrow C
$$

$$
\lambda x. M :: A \rightarrow B N :: A
$$

\n
$$
(\lambda x.M) N :: B
$$

\n
$$
\underline{A \rightarrow B} A \rightarrow E
$$

\n
$$
\underline{B}
$$

x :: A * B x :: A * B snd x :: B fst x :: A $(snd x, fst x) :: B * A$

• Proof normalisation corresponds to evaluation!

(snd x, fst x)

- Howard proposed extension for for-all and existentially quantified types (now known as dependent types) to predicate logic
	- de Bruijn's Automath
	- Martin-Löf's type theory (Agda, Idris)
	- PRL, nuPRL
	- Coquant and Huet's calculus of constructions (Coq proof assistant)

- In short, it is the observation that
	- propositions can be viewed as types
	- programs as their (constructive) proof
	- proof normalisation as program evaluation

- The pattern of logicians/computer scientist discovering the same system independently has repeated since then multiple times:
	- Second order lambda calculus (Jean-Yves Girard, John Reynolds), basis for Java, C#
	- Principal type inference, by Roger Hindley and Robin Milner (e.g., Haskell)
	- Existential quantification in second order logic as basis for abstraction (John Mitchell, Gordon Plotkin)
	- Girard's linear logic, linear types

