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Let’s go back in time

• Different, equivalent models of computation to address Hilbert’s 
Entscheidungsproblem


• Lambda-calculus (Church)


• Recursive functions (Gödel)


• Turing machine 



The (untyped) lambda calculus

• Functions can be applied to themselves:

λf. f f

(λf. f f)(λf. f f)  
⟶ 

(λf. f f)(λf. f f) 
⟶ 

(λf. f f)(λf. f f) 
…

𝛽

𝛽

• As a result, we can have non-terminating reduction sequences:



Church’s Simply Typed Lambda Calculus

case x f g ≃ case x of  
                       Left a  -> f a 
                       Right b -> g b  

• For the presentation,  we add the following functions & data 
constructors to the lambda calculus as short hand


• ( , ): like the pair data constructor in Haskell 


• fst, snd: like Haskell fst and snd


• left, right: like Left and Right of the Either type


• case: similar to case in Haskell, but restricted to Either type



Church’s Simply Typed Lambda Calculus

• Can be encoded in the lambda-calculus

(,) = λa. λb. λf. f a b 
fst = λa. λb. a 
snd = λa. λb. b 

Right = λa. λf. λg. f a 
Left  = λa. λf. λg. g a  

   case  = λa. λf. λg. a f g 



Church’s Simply Typed Lambda Calculus

M :: A N :: B
(M, N) :: A * B

M :: A * B
fst M :: A

M :: A * B
snd M :: B

read as:  
if you can derive 
M :: A and N :: B 

then 
(M,N) :: A * B  
is derivable



Church’s Simply Typed Lambda Calculus

M :: A

left M :: A + B

M :: B

right M :: A + B

M :: A + B K :: A ➔ C H:: B ➔ C

case M K H ::C



Church’s Simply Typed Lambda Calculus

[x :: A]

λx. M :: A ➔ B

⋮

M :: B

λx. M :: A ➔ B
(λx.M) N :: B

N :: A

read as:  
if we can derive M :: B 

from the assumption x :: A  
then 

λx.M :: A ➔ B 
is derivable 



Church’s Simply Typed Lambda Calculus

• The simply typed lambda calculus doesn’t have general recursion:

λf. f f can’t be typed!

• For all well-typed terms

- reduction terminates

- reduction does not change the type of a term

• Note: the Y-combinator can be added to make it turing-complete again:

Y = λf. (λx. f (x x))(λx. f(x x)) 

Y f = f (Y f) 

Y :: (A ➔ A) ➔ A



Natural Deduction

• At around the same time, Gerhard Gentzen was working on the logic aspects 
of the Hilbert program: establishing the consistency of various logics


• Gentzen introduced two new formulations of logic, which remain the main 
ones used to this day:


- Sequent calculus


- Natural deduction



Natural Deduction

• Rules come in pairs: introduction and elimination

A B

A ∧ B
∧-I

A
A ∧ B

∧-E1
B

A ∧ B
∧-E2

A ∧ B
B ∧ A B ∧ A

B A
∧-I

A ∧ B
∧-E2

A ∧ B
∧-E1



Natural Deduction

•  ⋁-introduction and elimination

A

A ⋁ B
⋁-I1

B

A ⋁ B
⋁-I2

A ⋁ B A ⇒ C B ⇒ C

C
⋁-E



Natural Deduction

• Implication

A ⇒ B

[A]
⋮

   B
⇒-I

A ⇒ B

B

A
⇒-E



Proof normalisation

• Gentzen observed that all proofs for propositional logic can be normalised, 
so they only contain sub formulas of premise or conclusion:

A ∧ B
B

A ∧ B
A

B ∧ A
∧-I

∧-E2 ∧-E1 A ∧ B
B

A ∧ B
A

B ∧ A

A ∧ B
A

A ∧ A
A



Curry Howard Isomorphism

• In 1934, Curry observed a relationship between logic implication A ⇒ B and 
function types A ➔ B


• Howard realised in 1969 that this connection is much deeper



Curry Howard Isomorphism

M :: A N :: B

(M, N) :: A * B

M :: A * B
fst M :: A

M :: A * B
snd M :: B

A B

A ∧ B

A
A ∧ B

B
A ∧ B



M :: A + B K :: A ➔ C H:: B ➔ C

case M K H :: C

M :: A

left M :: A + B

M :: B

right M :: A + B

A

A ⋁ B

B

A ⋁ B

A ⋁ B A ⇒ C B ⇒ C

C



[A]

A ⇒ B

⋮
   B

⇒-I

[x :: A]

λx. M :: A ➔ B

⋮

M :: B

A ⇒ B

B

A
⇒-E

λx. M :: A ➔ B
(λx.M) N :: B

N :: A



A ∧ B
B

A ∧ B
A

B ∧ A



A * B
B

A * B
A

B * A

x :: x ::
snd x :: fst x ::

(snd x, fst x) ::



A * B
B

A * B
A

B * A

A * B
A

A * A
A

(snd x, snd(fst x, fst x)) ::

(snd x, fst x)

• Proof normalisation corresponds to evaluation!

fst x :: fst x ::
(fst x, fst x)::

 snd(fst x, fst x)::



Curry Howard Isomorphism

• Howard proposed extension for for-all and existentially quantified types (now 
known as dependent types) to predicate logic


- de Bruijn’s Automath


- Martin-Löf’s type theory (Agda, Idris)


- PRL, nuPRL


- Coquant and Huet’s calculus of constructions (Coq proof assistant)



Curry Howard Isomorphism

• In short, it is the observation that 


• propositions can be viewed as types


• programs as their (constructive) proof


• proof normalisation as program evaluation



Curry Howard Isomorphism

• The pattern of logicians/computer scientist discovering the same system 
independently has repeated since then multiple times:


• Second order lambda calculus (Jean-Yves Girard, John Reynolds), basis for 
Java, C#


• Principal type inference, by Roger Hindley and Robin Milner (e.g., Haskell)


• Existential quantification in second order logic as basis for abstraction (John 
Mitchell, Gordon Plotkin) 


• Girard’s linear logic, linear types


• …?


